青青文学

第14章 不能太惯着他 (第1/2页)

第1章不能太惯着他

这个头发有点自然卷、相貌还挺帅气的男学生,却和刚才的综合大题一样,只看了一遍题目,便开始写解题步骤,似乎根本不用思考,当然,更可能的是在看完题目的一瞬间就有了解题思路。

不过区区两分钟,他已完成了第一道附加题,继续写起了第二题的答案。

徐世朝完全石化了,心中除了“卧槽”外完全想不到别的感叹词。

这个男生到底是何方神圣?这已不能称之为“学霸”,要称“学神”了吧?高二有这么强的数学学神吗?

徐世朝自问对于学校里的数学尖子生都算是认识的,去年的奥数初赛他也帮着带队、担起生活保障的职责,可这男生分明就没参加过上一年度的奥数初赛啊!

正当徐世朝目瞪口呆之时,忽然感觉有人拍了拍自己的肩膀,他回头一看,原来是前辈老郑来了。

老郑做了个噤声的动作,然后和他一起站在男生的后面,看着男生答题。

男生已在看第三道连徐世朝都没信心做出来的难题了。

“求证:数列an=3nsnars13n=1,2…的每一项都是整数,但都不是3的倍数。”

男学生这回终于停了两秒钟,然后就在两个老师的注视下,写下了“证明方法一”。

徐世朝当场倒抽了口凉气,这家伙,难道就在刚才的两秒思考时间里,想到了两种证明方法?

“证明方法一:设θ=ars13,则sθ=13,且an=3nsnθ,

(1)当n=1,2时,a1=3sθ=1,a2=32s2θ=92s2θ

1和-都是整数且不是3的倍数,命题可证。

(2)假设ak-1,ak都是整数,且都不是3的倍数,由三角公式可得(注:k-1为下标):

ak+1=3k+1sk+1θ=3k+1[2sθskθ-sk-1θ

……

由数学归纳法可知,命题对于一切正整数成立。”

“证明方法二:设θ=ars13,则sθ=13,sinθ=2*2123,

引入复数z=3sθ+isinθ

则an是复数zn=[1+2*212i]n的实部……”

看着男学生轻轻松松写完了两种证明方法,然后翻了翻卷子,几乎以一目十行的速度检查完毕,便叠好试卷放到角落里,用空白的草稿纸盖着,然后他便打着呵欠开始睡觉了。

好家伙,这学生的草稿纸居然是空白的!

徐世朝从小到大,参加过数学考试无数次了,也从没试过有草稿纸空白的时候!

徐世朝不由偷偷地掀起草稿纸,看了眼试卷上的姓名班级一栏。

秦克,高二三班。

没什么印象啊……高二的数学尖子生中有这号人物?

徐世朝正苦苦回忆着,老郑忽然朝旁边靠窗的学生做了个动作,示意那学生拉下窗帘。

如遇章节错误,请点击报错(无需登陆)


新书推荐

医妃难惹:关门,放王爷!" 中宫" 修宇航船的大法师" 海贼王之角色扮演" 满级的我混异界" 深情不晚" 惨死重生,将门嫡女毒翻朝野"